
System of system approach applied to the WITNESS IAM

Matthieu Meaux, Thierry Chevalier, Marie Morere

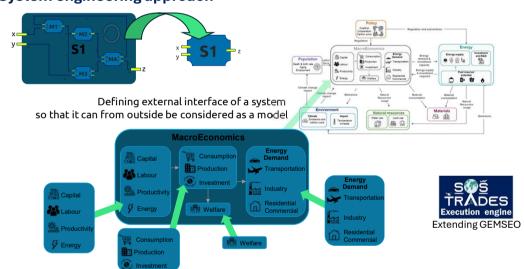
One challenge for IAMs is capturing interactions and feedback loops between sub-models, often overlooked but crucial for accuracy. WITNESS is a recent IAM designed to address these interactions using a system of systems approach. It applies Multi-Disciplinary Analysis & Optimization (MDAO) to solve the resulting complex problems.

System level modelling approach

Fixed point theorem for system convergence unicity

Definition 1. A fixed point of a mapping $T:X\to X$ of a set X into itself is an $x\in X$ which is mapped onto itself, that is Tx = x. **Definition 2.** Let (X,d) be a metric space. A mapping $T:X\to X$ is called a **contraction** on X if there exists a positive constant K<1 such that $d(T(x), T(y)) \le Kd(x, y)$ for all $x, y \in X$. **Theorem 2** (Banach's Fixed Point Theorem). Let (X,d) be a complete metric space and let $T:X\to X$ be a contraction on X. Then T has a unique fixed point $x\in X$ (such that T(x)=x). Corollary 3 (Iterations and error bounds). The iterative se ptions in Banach's Fixed Poin y $x_0 \in X$ converges (under the assumptions in Banach's Fixed Point a) to the unique fixed point x of T. Error estimates are the **prior** $d(x_m, x) \le \frac{K}{1 - K} d(x_{m-1}, x_m).$

Newton method for convergence finding


 $X_{n+1}=X_n-\big(F'(X_n)\big)^{-1}F(X_n)$ Means you need to define the gradient function of all your models

Complex step differentiation

$$f'(x) = \frac{\Im(f(x+\mathrm{i}h))}{h} + O(h^2)$$

System of systems level modelling approach

System engineering approach

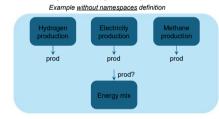
Automated handling of interactions and coupling between systems within uplevel system of systems

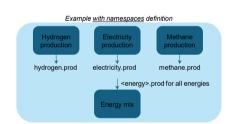
System of systems level usage approach

Collaborative Design Facilities inspired

- strong users & groups management
- multi-user web graphical interface traced parameter value changes
- traced modular validation of assumptions & results
- bulk assumptions loading / bulk results export

Scalable


- Native cloud implementation
- Automated management if exécution constraints (where, which resource for which model...)
- On the fly pods allocation when studies are loaded
- Scalable proven applied mathematics algorithmics

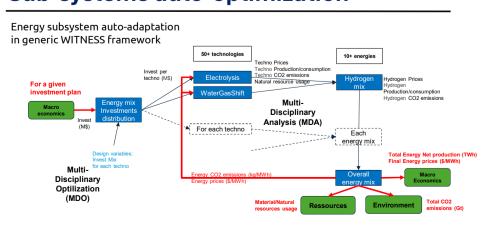

● GitLab

Reference data sets handling

- · Plugins to accommodate with fetching from / writing to various data repository technologies (CSV files, JSON files, RDBMS, NoSQLDB, OODB...)
- Datasets to describe data location and content
- Mappings to connect various datasets with various variables in specific namespaces
- Working for modular bulk assumptions loading / bulk results exports

Namespaces per system

Macro-economic model specifics


Capital requires energy to be productive Concept of "usable capital"

 $K_u = K \frac{E_u}{E_{max}k}$: capital

: usable energy : maximum energy that the capital can absorb

then GDP becomes $Y = (1 - \Omega)$. A. $(a. Ku^{\rho} + (1 - a). L^{\rho})^{\sigma/\rho}$

Sub-systems auto-optimization

