System of systems approach for exploring energy transition

CESAMES Architecture Days
Dec 16th 2021

Airbus SoS Trades project team
Speakers today
Matthieu Meaux, Airbus
Thierry Chevalier, Airbus
Linux Foundation Open Source for Climate (OS-Climate or OS-C)

Applying the community-based open-source approach that has enabled breakthroughs in Life Sciences & Tech to solve data & analytics challenges required for investment to achieve Paris Climate Accord goals

OPEN SOURCE COMMUNITY

• Governance, licensing, and collaboration structures enabling stakeholders to share cost, intellectual property, and effort.
• Joint projects for new data, modelling, standards, and supporting technology

COMMONS

• Curated library of public and private sources, for both transition and physical risk/opportunity
• More accurate corporate historical and forward-looking climate & ESG metrics as a public good

GLOBAL DATA ANALYTIC TOOLS

• Integrate climate-related risk and opportunity into decisions by investors, financial institutions, regulators, etc.
• Top-down and bottom-up modelling
• Scenario analysis tools
• Alignment tools

Visit www.os-climate.org for more information
OS-Climate Transition tool

https://os-climate.org/transition-tool/

How to define robust development or investment targets through such manyfold futures?
How to evaluate the transition risk?
System Engineering approach to break down complexity
Components re-use with updated interfaces for coupling

State of the art resources limitation models

Re-use DICE model with completed interfaces

DICE: Dynamic Integrated Climate-Economy model, developed by Economy Nobel Prize Prof. W.Nordhaus
New energy framework needed to satisfy the materials & resources interactions envisaged

Disruptive new energy model linked to production technologies

Advanced coupling
But coupling approach for energy production is tricky...

- 40+ energy production technologies & more by the day need to be able to add easily new energy production technologies

- Interactions between energy production technologies e.g. produced electricity used to produce hydrogen by electrolysis

- Dynamic investment capacity depending on Economy itself impacted by damages induced by emissions... ... and cost/availability of produced energy

- Resources and materials limitations / constraints some limitations potentially limiting several technologies

- Various modeling & coupling strategies needed e.g. analytic & stochastic, continuous & discrete...

\[
\text{with given investment plan ($/y)}
\]

Objective: maximize Net production (TWh) and minimize CO2 emissions (Mt)

Design variables: Investment distribution over technologies for all years (techno invest mixes)

Constraints: with constraints on energy production
\[
\text{TWh}_i_{-}\text{produced} - \text{TWh}_i_{-}\text{usedforenergyprod} > \text{TWh}_i_{-}\text{for_economy}
\]
Advanced simulation architecture match the need however

- 40+ energy production technologies & more by the day
 => capability to “dump” new energy production techno in framework

- Interactions between energy production technologies
 => loop in framework with Multi-Disciplinary Feasible strategy

- Investment capacity varying depending on Economy
 => investment capacity is an input of the model

- Resources and materials limitations / constraints
 => resource & materials modules introduced to represent limitations

- Various modeling & coupling strategies needed
 => python models, library of coupling plug-ins
The energy model is a MDA
Total production and CO2 emissions are computed following a given investment plan
Electrolysis will be net zero emissions only if electricity mix is zero emissions
Overall system of systems framework for transition models integration

WITNESS: World environmental Impact and Economics Scenarios
WITNESS: paving the way for optimization of energy transition path

Objective: maximize welfare and minimize CO2 emissions

Design Variables: technology investment mixes (from 2020 to 2100)

Constraints: (from 2020 to 2100):
- Total energy production > energy lower bound
- Net energies production > energies demand
- Liquid fuel + H2 prod + H2 liquid production > % total production
- Solid fuel + electricity + biomass production > % total production
- Hydropower production < hydropower production in 2020
- H2 liquid production > %H2 total production
- Available land > land demand (for forest, agriculture,...)

Key Numbers

MDO
- 65 disciplines
- 4240 design variables
- 265383 variables
- 1200 constraints

MDA
- 63 disciplines
- 25064 coupling variables
- 262715 variables

Optimization Solver
- L-BFGS-B

B-splines
- 8 poles per variable vector
- 80 components per variable vector

MDA Analysis
- Newton-Raphson solver
- ~30 iterations
- ~8 minutes

Lagrangian Objective Formulation
- 1 scalar objective instead of 1200 constraints and 160 objectives

Adjoint Based Gradient Computation
- 1 function evaluation
- 1 adjoint system
- instead of 241 function evaluations per iteration

Solved in ~10 hours
WITNESS Demo

10+ Energies and 60+ technologies

Wellfare vs T° rise pareto
Contribute to OS-Climate initiative
Join us soon!

First release end’21
Community opening planned end of Q1’22
Thank You!

Interested in Learning More:
https://os-climate.org/transition-tool/
https://os-climate.org/contact-us/